
## **Drive selections** for linear drive units with screw drive

| Feed force<br>F <sub>x</sub> [N]                                               | Acceleration force<br>F <sub>a</sub> [N]                                                                                                                     | Power from torque and rotational speed [kW]                                    |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| $\mathbf{F}_{\mathbf{X}} = \mathbf{M} \cdot \mathbf{g} \cdot \boldsymbol{\mu}$ | $F_a = m \cdot a$<br>In vertical applications, the mass<br>acceleration a must be added<br>to the acceleration due to gravity<br>g [9.81 m/s <sup>2</sup> ]. | $P = \frac{M_{A} \cdot n_{\max} \cdot 2 \cdot \pi}{60 \cdot 1000}$             |  |
| Definitions                                                                    |                                                                                                                                                              |                                                                                |  |
| $M_A$ = Required drive moment [Nm]                                             |                                                                                                                                                              | m = Mass to be transported [kg]                                                |  |
| $M_{load}$ = Moment resulting from the various loads [Nm]                      |                                                                                                                                                              | a = Acceleration [m/s <sup>2</sup> ]                                           |  |
| M <sub>idle</sub> = Idle torque [Nm]                                           |                                                                                                                                                              | p = Screw pitch [mm]                                                           |  |
| M <sub>rot</sub> = Rotational acceleration moment [Nm]                         |                                                                                                                                                              | P = Power [kW]                                                                 |  |
| M <sub>trans</sub> = Translational acceleration moment [Nm]                    |                                                                                                                                                              | L = WIESEL® length [mm]                                                        |  |
| $F_x$ = Feed force [N]                                                         |                                                                                                                                                              | n <sub>max</sub> = Maximum rotational speed [rpm]                              |  |
| $F_a = Acceleration force [N]$                                                 |                                                                                                                                                              | $\mu$ = Friction factor                                                        |  |
| g = Acceleration due to gravity [m/s <sup>2</sup> ]                            |                                                                                                                                                              | $j_{sp}$ = Mass moment of inertia of the screw per meter [kgm <sup>2</sup> /m] |  |
| V <sub>max</sub> = Maximum linear speed [m/s]                                  |                                                                                                                                                              |                                                                                |  |

## Calculating the drive moment $M_A$ [Nm]

The required drive moment is composed of the "load moment", the "acceleration moment" and the "idle torque".



## Friction factor $\boldsymbol{\mu}$

## Mass moment of inertia j<sub>sp</sub>

| Values for $\mu$ lubricated          |  |
|--------------------------------------|--|
| 0.05                                 |  |
| 0.1                                  |  |
| Friction value of the external guide |  |
| 0.3                                  |  |
|                                      |  |

| Туре                                                                                                                                  | P [mm]          | j <sub>sp</sub> [kgm²/m]                           |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------|
| WIESEL <i>POWERLine®</i> WM60<br>WIESEL <i>DYNALine®</i> WV60<br>WIESEL <i>VARIOLine®</i> WZ60<br>WIESEL® W02                         | 5, 20, 50       | 8.8 · 10 <sup>-5</sup>                             |
| WIESEL <i>POWERLine®</i> WM80<br>WIESEL <i>DYNALine®</i> WV80<br>WIESEL <i>VARIOLine®</i> WZ80<br>WIESEL <i>FORCELine®</i> MLSM60 KGT | 5, 10, 20, 50   | 2.25 · 10 <sup>-4</sup>                            |
| WIESEL POWERLine® WM120<br>WIESEL DYNALine® WV120                                                                                     | 5<br>10, 20, 40 | 6.41 · 10 <sup>-4</sup><br>6.28 · 10 <sup>-4</sup> |
| WIESEL POWERLine® W00/WM40                                                                                                            | 5               | 1.13 · 10 <sup>-5</sup>                            |