Drive selection
 for linear drive units with toothed belt drive

Feed force
F_{X} [N]

$$
\mathbf{F}_{\mathbf{x}}=\mathbf{m} \cdot \mathbf{g} \cdot \mu
$$

Acceleration force F_{a} [N]

$$
\mathrm{F}_{\mathrm{a}}=\mathrm{m} \cdot \mathrm{a}
$$

In vertical applications, the mass acceleration a must be added to the acceleration due to gravity $\mathrm{g}\left[9.81 \mathrm{~m} / \mathrm{s}^{2}\right]$.

Power from torque and rotational speed [kW]

$$
P=\frac{M_{A} \cdot n_{\max } \cdot 2 \cdot \pi}{60 \cdot 1000}
$$

$\begin{array}{ll} \mathrm{m} & =\text { Mass to be tranported }[\mathrm{kg}]^{11} \\ \mathrm{a} & =\text { Acceleration }\left[\mathrm{m} / \mathrm{s}^{2}\right] \\ \mathrm{d}_{0} & =\text { Effective diam. of pulley }[\mathrm{mm}]^{2)} \end{array}$				
P $=$ Power $[k W]$ L $=$ WIESEL ${ }^{\circledR}$ length $[m m]$ $J_{\text {syn }}$ $=$ Idle torque of pulley $\left[k g m^{2}\right]$ $\mathrm{n}_{\max }$ $=$ Maximum rotational speed [rpm] μ $=$ Friction factor				
L $=$ WIESEL ${ }^{\oplus}$ length [mm] $\mathrm{J}_{\text {syn }}$ $=$ Idle torque of pulley $\left[\mathrm{kgm}^{2}\right]$ $\mathrm{n}_{\max }$ $=$ Maximum rotational speed [rpm] μ $=$ Friction factor				
$\begin{aligned} & J_{\text {syn }}=\text { Idle torque of pulley [kgm²] } \\ & \mathrm{n}_{\max }=\text { Maximum rotational speed [rpm] } \end{aligned}$				
$\mu=$ Friction factor				

Calculating the drive moment M_{A} [Nm]

The required drive moment is composed of the "load moment", the "acceleration moment" and the "idle torque".

Type	μ	$J_{\text {syn }}\left[\mathrm{kgm}^{2}\right]$	spec. mass tooth belt [kg/m]	Type	μ	$J_{\text {syn }}\left[\mathrm{kgm}^{2}\right]$	Spec. mass tooth belt [kg/m]
WH40	0.05	8.800 E-06	0.032	WHZ50	0.1	6.906E-05	0.055
WH50	0.1	1.928 E-05	0.055	WHZ80	0.1	5.026E-04	0.114
WH80	0.1	2.473 E-04	0.210	WM60 ZRT	0.1	$2.127 \mathrm{E}-05$	0.074
WH120	0.1	$1.004 \mathrm{E}-03$	0.340	WM80 ZRT	0.1	$1.115 \mathrm{E}-04$	0.158
				MLSH60 ZRT	0.1	4.604E-05	0.114

[^0]
[^0]: 1) Total mass $m=$ mass to be moved + mass of power bridge ${ }^{3)}+$ mass of toothed belt

 Mass of toothed belt = spec. mass of tooth belt $\left[\mathrm{kg} / \mathrm{ml} \cdot 2^{4)}\right.$. WIESEL*-lenght [mm]
 2) Values for the respective effective diametres, see at corresponding mechanical linear units.
 ${ }^{3)}$ For Z-axis moved dead mass to be taken into account.
 4) To replace by 1 at Z-Axis

