Drive selection for linear drive units with toothed belt drive

Feed force F_x [N]

Acceleration force Fa [N]

 $\mathbf{F}_{\mathbf{x}} = \mathbf{m} \cdot \mathbf{g} \cdot \boldsymbol{\mu}$

 $\mathbf{F}_{\mathbf{a}} = \mathbf{M} \cdot \mathbf{a}$ In vertical applications, the mass acceleration a must be added to the acceleration due to gravity g [9.81 m/s²].

Definitions

M _A = Required drive moment [Nm]
M _{load} = Moment resulting from the various loads [Nm]
M _{idle} = Idle torque [Nm]
M _{rot} = Rotational acceleration moment [Nm]
M _{trans} = Translational acceleration moment [Nm]
F_x = Feed force [N]
F _a = Acceleration force [N]
g = Acceleration due to gravity [m/s ²]
V _{max} = Maximum linear speed [m/s]

Power from torgue and rotational speed [kW]

$$\mathsf{P} = \frac{\mathsf{M}_{\mathsf{A}} \cdot \mathsf{n}_{\max} \cdot 2 \cdot \pi}{60 \cdot 1000}$$

m	=	Mass to be tranported [kg] ¹⁰
а	=	Acceleration [m/s ²]
d _o	=	Effective diam. of pulley [mm] ²
Ρ	=	Power [kW]
L	=	WIESEL® length [mm]
J _{syn}	=	Idle torque of pulley [kgm ²]
n _{max}	=	Maximum rotational speed [rpm]
μ	=	Friction factor

Calculating the drive moment M_A [Nm]

The required drive moment is composed of the "load moment", the "acceleration moment" and the "idle torque".

M_A Total =

Туре	μ	J _{syn} [kgm²]	Spec. mass tooth belt [kg/m]	Туре	μ	J _{syn} [kgm²]	Spec. mass tooth belt [kg/m]
WH40	0.05	8.800 E-06	0.032	WHZ50	0.1	6.906E-05	0.055
WH50	0.1	1.928 E-05	0.055	WHZ80	0.1	5.026E-04	0.114
WH80	0.1	2.473 E-04	0.210	WM60 ZRT	0.1	2.127E-05	0.074
WH120	0.1	1.004 E-03	0.340	WM80 ZRT	0.1	1.115E-04	0.158
				MLSH60 ZRT	0.1	4.604E-05	0.114

¹⁾ Total mass m = mass to be moved + mass of power bridge 3^{3} + mass of toothed belt Mass of toothed belt = spec. mass of tooth belt [kg/m] $\cdot 2^{4}$ · <u>WIESEL®-lenght [mm]</u> 1000

Values for the respective effective diametres, see at corresponding mechanical linear units.
For Z-axis moved dead mass to be taken into account.
To replace by 1 at Z-Axis